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Abstract

We report on experiments investigating velocity-vorticity
interactions that underlie the mechanisms of turbulent in-
ertia associated with advecting regions of concentrated
vorticity. To isolate mechanisms and expose the full scope
of possible interactions, unsteady laminar flow experi-
ments are conducted. These experiments mimic instan-
taneous flow field interactions known to exist in turbulent
wall-flows. Experiments are conducted in a large water
tank that involved perturbing laminar vortex rings by al-
tering the natural advection velocity of the ring. Purely
advective perturbations to the ring result in a momentary
amplification of the Reynolds stress that subsequently de-
creases back to the unperturbed magnitude. Perturbations
below an observed threshold, however, do not cause any
changes to the momentum transport characteristics of the
vortex ring.

Introduction

Vortex rings have fascinated researchers for nearly 150
years and can be considered the simplest form of more
general concentrated vortices, e.g., cyclones and tornados
[1, 12]. Specifically, confined vortex rings exist in the heart
when blood exits the left atrium into the left ventricle cav-
ity, and are used as a propulsion mechanism for jellyfish
and squid [7, 14]. Numerous researchers have investi-
gated vortex rings and several review articles summarize
their behaviour [13, 16]. Their interaction with an angled
wall and a normal wall has been investigated by [3, 11].
They have also been interacted with shear layers [2, 12].

One motivation behind investigating vortex rings inter-
acting with surfaces and other flows stems from observed
similarities to the coherent motions in boundary layer
flows. It is thought that by understanding vortex ring
interactions, insight can be gained in respect to wall-
bounded turbulent flows. The objective of this study is
to investigate the effect of inducing an advection velocity
to a vortex ring.

Methods and Procedures

Experimental Facility

Vortex rings are generated using a 125 mm piston-cylinder
device and a 34.8 mm seamless stainless steel tube that is
800 mm long. The cylinder and SS tube are connected
using flexible 38.1 mm tubing. The piston-cylinder mo-
tion is precisely controlled using LabView and a stepper
motor. A vortex ring is produced at the exit of the tube
by converting rotational motion from the stepper motor
to translation using a 12.7 mm threaded rod with pitch of
2.11 mm/rev. The outer contour at the exit plane of the

x

y Ut

Vp

Figure 1: Experimental facility used for the experiments.
Note that the stepper motor, timing belt, and flexible tub-
ing are not shown.

tube is machined to form a wedge with tip angle of 10◦
and length of 6 mm. The vortex ring apparatus (VRA) is
allowed to translate on 25.4 mm diameter rails. Transla-
tional velocity and displacement of the VRA are controlled
using a LabView and an additional stepper motor, which
drives a timing belt system that is attached to the VRA.
Trapezoidal velocity versus time profiles are implemented
in LabView with an impulse configuration, i.e., accelera-
tion time is much less than the overall time interval, T.
Due to unequal time intervals for the vortex ring genera-
tion and translation, the timing is set so that the end of the
constant velocity region of each respective velocity curve
coincide. Experiments are conducted in a large water tank
with width of 1.08 m, length of 3.6 m and height of 0.37
m. A schematic of the apparatus is presented in figure 1.

Vortex rings are formed using a stroke length, L/D of 1.96,
where L is the fluid displacement in the tube and D is the SS
tube diameter, at a Reynolds number based upon average
slug velocity, Vs = 1/T

∫
vs(t)dt and tube diameter of 2800.

Gharib et al. [7] identified the ratio L/D =VsT/D with the
formation time. The translation velocity, Ut, ranged from
±2.37 cm/sec, which resulted in a perturbation velocity,
Ut/Ucl, of ±23.9%, where Ucl is the centerline velocity
obtained by spatial averaging in the streamwise direction
centred over 0.1D along the x-axis ring centerline.

Experimental Methods

Digital particle imaging velocimetry data are obtained at
the wall-normal plane of symmetry (x – y plane). A dual
pulse Nd:YAG laser operating at 532 nm is used as the
light source. The laser Q-switch timing is synchronized
to a CCD camera with resolution 4072 × 2720 pixel2 using
pulse generators. The water tank is seeded with hollow
glass sphere particles, nominally 15 microns in diameter.
The time delay between image capture ranges from 2 to 6
ms so that the bulk displacement ranges from 8 to 10 pixels.
Image pairs are captured at a rate of 2 Hz. Timing between
image acquisition, vortex ring generation, and apparatus
translation is accomplished using the output signal from
the pulse generator to trigger LabView. Since this timing



method is software based, the accuracy is limited to 0.001
s.

Data Reduction

A multi-pass, multi-grid, cross-correlation method is uti-
lized to determine the particle displacements with a base
interrogation window size of 32 × 32 pixel2, which is sub-
sequently divided into four 16 × 16 pixel2 windows. A
window shift of 8 pixels (50% overlap) is also utilized in
the second pass. The particle diameters ranged from 2
to 3 pixels, which results in an RMS uncertainty of 3.7 –
4.3× 10−4 cm [15]. The field of view is 6.6D × 4.22D and
starts 2.5D from the stopping point of the tube exit. Ve-
locity vector resolution is 0.0141D for both the streamwise
and wall-normal directions and the uncertainty in velocity
is less 1% after averaging the instantaneous vector fields
over 35 trials. The kinematic Reynolds stress, UV, is ob-
tained by taking the product of the steamwise velocity, U
with the wall-normal component, V. The spanwise vor-
ticity, ωz, is obtained by differentiating the velocity field
using a least-squares method [6]. The circulation, ζ, on the
upper and lower half of the ring is obtained by Stokes theo-
rem, ≡

∮
c u ·dl=

∫
AωzdA, using a two-dimensional version

of the trapezoidal rule. The gradient of the Reynolds stress
is related to the velocity-vorticity and streamwise gradient
of kinetic energy by the following exact relationship

∂UV
∂y
+
∂UW
∂z

= ωyW−ωzV+
1
2
∂

∂x

(
V2+W2−U2

)
, (1)

where W is the spanwise velocity and ωy is the wall-
normal vorticity [8]. Within the wall-normal plane of
symmetry, W and ∂()/∂z are equal to zero. The first two
terms on the RHS of equation 1 may be thought of as the
rotational component of the motion, and the last term as
the irrotational component of the motion [17]. By under-
standing how the gradient of the Reynolds stress arises,
it is thought that the ways in which velocity and vortic-
ity fields interact to generate the apparent inertial force
attributable to turbulent eddies.

Results

A typical UV contour plot is shown in figure 2 along with
vectors of U and V, where () represents an average over all
of the vector fields. This average is obtained by spatially
shifting the vortex ring at each x/D to a fixed stream-
wise location and then averaging over the instantaneous
fields. The magnitude of the spatial shift is based upon
the location where the average of the streamwise velocity
in the wall-normal direction is maximized. Even though
the streamwise evolution of the ring changes, this effect
is less than 8% in Ucl for cases investigated, therefore,
the ensemble averaged results can be considered ‘steady’.
Since there are four poles in a quadrant configuration in
figure 2, a majority of the results presented herein are
based upon this spatial quadrant configuration. Integrat-
ing each quadrant allows for a comparison to made based
upon both a local, i.e., individual quadrant, and a global
basis, i.e., summation of the individual quadrants. Specif-
ically, UV/V2

s as a function of Ut/Ucl, shown in figure 3
depicts a momentary amplification of the Reynolds stress
that subsequently decreases back to the unperturbed mag-
nitude. This normalization is based upon a formation pa-
rameter. Perturbations below 10%, however, do not cause
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Figure 2: Contours of UV [cm2/s2] for Ut/Ucl = 0 along
with velocity magnitude vectors of U and V [cm/s].
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Figure 3: Dimensionless Reynolds stress as a function of
the perturbation. Description: Quadrant 1, �; Quadrant
2, △; Quadrant 3, �; and Quadrant 4,^. Filled symbols are

normalized using V2
s and open symbols, U2

cl, respectively.

any changes to the momentum transport characteristics
of the vortex ring. However, if the Reynolds stress is
normalized by U2

cl, a local normalization, the magnitude

of UV becomes a constant. The average value for the
four quadrants from one to four is −2.24, 2.20, −2.30, 2.38
with standard deviation of 0.141, 0.142, 0.152, 0.166, re-
spectively. Interestingly, for negative perturbations, the
maximum deviation in Reynolds stress approaches the
average value obtained using a local normalization. The
maximum percent difference in UV between a zero and
positive/negative perturbations of 15% and 21% is 46%
and 45%, respectively.

The circulation values presented in figure 4 are based
upon the upper and lower half of the ring. The values
are normalized using the formation circulation assuming
a slug model, which is given as VsL, and a local value
of UclR, where R is the half distance between the mini-
mum and maximum spanwise vorticity. A slug model is
used instead of the boundary layer approximation result,
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Figure 4: Dimensionless circulation as a function of the
perturbation. Description: Quadrant 1+ 2, �; Quadrant
3+ 4, △. Filled symbols are normalized using VsL and
open symbols, UclR.

ζ = VsT/2, presented by Diden [4] since T < 1 second for
the current experiments. Both normalizations follow the
same trend that is exhibited in figure 3, albeit, the for-
mation normalization is not as distinct. The difference
between the upper and lower ring circulation is less than
2%.

The nonzero terms on the RHS of equation 1 as function
of the applied perturbation are shown in figure 5A and

B. The formation normalization is V2
s /D/2 and the local

normalization is U2
cl/R. The data normalized with the

formation and local parameters follow the same trend as
the Reynolds stress, but both normalizations show more
scatter in comparison to figure 3. A global balance of the
terms in equation 1 is nominally zero. The mean value
for the local normalization is −0.028± 0.026 and for the
formation normalization, −0.029± 0.026. The remainder
is attributed to a slight nonzero spanwise velocity.

If ∂UV/∂y is estimated from equation 1 instead of calcu-
lated directly, the percent difference is low by approxi-
mately 10− 15%. It is not clear at this time why the de-
viation exists. In well-developed boundary layers, the
irrotational part is, on average, about three orders of mag-
nitude smaller than the rotational term [9]; however, for
the current investigation, the irrotational term is 1.5× the
rotational.

In the context of concentrated regions of vorticity, a critical
question relates to whether the local velocity field (mo-
mentum field per unit mass) is experiencing a net drag
or impulse owing to its interaction with the vorticity field
[10]. For idealized vortices these interactions are precisely
described in terms of a “drift velocity” between the vortex
and the surrounding velocity field [5]. This effect produces
a Magnus-type force that can be positive or negative de-
pending on the details of the interaction. The drift velocity
is given as

∆ui = ϵi jkω j
gk

ωlωl
, (2)

where gk is the nonpotential viscous force given as
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Figure 5: Dimensionless rotational term, ωzV, is shown
in figure A and the irrotational term, 0.5∂

(
V2−U2

)
/∂x,

is shown in figure B as a function of the perturbation.
Description: Quadrant 1, �; Quadrant 2, △; Quadrant 3,
�; and Quadrant 4, ^. Filled symbols are normalized

using V2
s /D/2 and open symbols, U2

cl/R.
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Figure 6: Streamwise drift velocity vectors for figure A
(Ut/Ucl = 0) and figure B (Ut/Ucl = −21.2%) in mm/s.

−νϵklm∂/∂xlωm and ν is the kinematic viscosity [5]. Equa-
tion 2 simplifies to the following components: ∆ux =
−ν/ωz∂ωz/∂x and ∆uy = −ν/ωz∂ωz/∂y. Since the vortex
ring is traveling in the streamwise direction, it is expected
that there will be a natural asymmetry in∆ux. This is qual-
itatively evident in figure 6, which compares Ut/Ucl = 0
and −21.2%. Quantitatively, the skewness, γ, is an indi-
cator of asymmetry and is shown as a function of Ut/Ucl.
For negative perturbations, the skewness increases and
subsequently nearly decreases back to zero perturbation.
The opposite trend exists for positive perturbations. Both
trends are consistent with the UV trend. These trends
are indicative that the perturbed vortex motion results in
a net (integral sense) augmentation or attenuation of the
surrounding momentum field.

The gradient of the Reynolds stress, which is a dynami-
cal term that appears in the time averaged Navier–Stokes
equations, i.e., ’turbulent force’, and acts as a net source
or sink of momentum depending upon whether y < ym or
y> ym, where ym is the position where the Reynolds stress
is maximized [10]. Clearly contours of ∂UV/∂y shown in
figure 8 are substantially modified by the perturbation,
both in magnitude and spatial distribution. For case C,
the peak ’force’ that the ring is subjected to is highly con-
centrated, whereas for case A, the ’force’ is distributed
over a larger area of the ring. For a negative perturbation,
∂UV/∂y is biased towards quadrants 1 and 4, whereas for
a positive perturbation, ∂UV/∂y is biased towards quad-
rants 2 and 3. The trends exhibited in the drift velocity are
attributed to the aforementioned biases in ∂UV/∂y.
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Figure 8: Contours of the wall-normal gradient of the Reynolds stress, [cm/s2], for Ut/Ucl: figure A = −21.2%, figure B
= 0%, and figure C = 15%.
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Figure 7: Skewness in ∆ux as a function of the perturba-
tion.

Conclusions

An experimental investigation of vortex rings subjected to
an induced advection velocity is reported herein. Purely
advective perturbations to the ring result in a momentary
amplification of the Reynolds stress that subsequently de-
creases back to the unperturbed magnitude. Perturbations
below an observed threshold, however, do not cause any
changes to the momentum transport characteristics of the
vortex ring. The drift velocity asymmetry is consistent
with the notion that the perturbed vortex motion results
in a net (integral sense) augmentation or attenuation of
the surrounding momentum field.
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